您正在使用IE低版浏览器,为了您的雷峰网账号安全和更好的产品体验,强烈建议使用更快更安全的浏览器
此为临时链接,仅用于文章预览,将在时失效
人工智能开发者 正文
发私信给汪思颖
发送

0

大脑信息加工的拓扑性质:感受野模型

本文作者: 汪思颖 2017-09-24 10:01
导语:详细解读pRF模型(population Receptive field model)。

雷锋网 AI科技评论按,本文作者李雷年,北京师范大学教育与发展心理学博士。原文载于知乎专栏脑成像数据处理(形象但不失严格地),AI科技评论获其授权转发。

“神经网络之父”Geoffrey Hinton回忆自己萌发对人工智能兴趣的时候,提到在高中时代,一个同学跟他讲解大脑加工信息的“全息图”特点:切掉任意一块脑袋后一段时间内,失去的心理机能会慢慢恢复,故而可以推测大脑对于刺激的加工并不存在特定于某一功能的脑区。他说该同学可能受到了拉什利的老鼠大脑切除实验的影响。

在相当长的一段时间后,人们意识到这种特点反映了人脑的可塑性,而且脑损伤并不总是可修复的。人们提出很多探索性的概念来推测大脑如何加工信息,最经典的例子是“祖母细胞”。迄今为止,还有人言辞激烈地反对或者赞成这个概念,甚至反对这种思维方式。

然而另外一条道路上,做神经网络的学者在客体的分类识别上取得了长足的进步。一些神经网络模型考虑到是否应该规定相邻的中间层的计算单元,甚至邻近神经元的关系决定了整个神经网络模型的功用。当然大部分的神经网络模型都没有刻意思考信息表征的空间拓扑性这个命题。

基础视觉课老师曾经讲过在相当微观的层面上,大脑对视觉刺激的表征是拓扑的,一小簇脑成像的空间基本单位总是对视觉特征的一个维度的一个水平做出反应,如果对于采集到的初级感觉表征区域的神经电信号有适当的建模方法,你总能够得到一条神经调谐曲线。特定于某一类刺激的神经调谐曲线,它们的空间定位总是聚合在一起的,而不是分散在大脑各处的。

尽管多数fMRI成像研究基于的假设就是某一心理功能在大脑中是可以定位的,然而,对于fMRI成像数据而言,因为空间分辨率不够高,因此需要一个稳定有效的算法来进行参数估计。

早在07年就有文章提出视觉感受野的估计模型pRF模型(population Receptive field model)。作者运用功能磁共振的手段,特别设计了一些刺激,然后带入线性模型中,就得到了拓扑表征视觉空间的特定脑区。

大脑信息加工的拓扑性质:感受野模型

ABCD四种分别代表在空间上做各类运动的几种刺激形式。实验设计中刺激出现的方位随机化以抵消顺序效应。

被试在核磁仪中注视这些刺激的同时扫描功能像,在一系列预处理后,得到了每个体素的时间序列数据。然后就开始了基于模型的分析,模型整体和GLM过程一致,只是在预测信号上采取了不同的计算范式:

大脑信息加工的拓扑性质:感受野模型

首先,他们根据视觉感受野激活的性质,定义了一个二维高斯分布的population RF模型:

大脑信息加工的拓扑性质:感受野模型

假设在这个随机场中,单位孔径的刺激对于视觉感受野的fMRI成像得到的bold信号产生的影响不变,那么在这个在大脑中产生影响的只有两个变量,刺激的空间坐标和时间。

大脑信息加工的拓扑性质:感受野模型

这个式子表示的是随着时间(t)进展,我们期望的,对刺激做拓扑表征的神经元的活动。

而根据一般核磁数据线性建模的方法,用r(t)和hrf做卷积得到的就是该脑区的bold 信号反应,也就是我们从核磁仪器上读到的数值。

接下来的步骤就非常明确了。我们只要把上述模型带入我们通过核磁扫描观测到的各个体素(Voxel)上的数值就可以了。参数估计方法也就是最通用的算法。

这种建模方式在很多基础感知觉的表征上获得了成功。最近的研究更加令人兴奋,运用此种方式,一些抽象化表征的刺激类型,在某些非初级视觉脑区的神经调谐曲线也被侦测到了。

荷兰学者Harvey领导的团队通过fMRI adaptation范式取得核磁成像数据,采用了上述方法,通过神经调谐曲线的半高宽(FWHM)和对于特定数量的敏感性作为优化目标。

最终,他们得到了对于特定数量的加工具有敏感性的脑区。比方说,在顶内沟(IPS)脑区的某一些空间聚在一起特定的体素(Voxel)中,可以得到对于数量“6”(六个圆点)拟合得非常好的调谐曲线。

更有趣的是,如果你在IPS沿着特定的方向画一条线,你会得到非常漂亮的体现数字表征空间拓扑性的“数字线”,在这条线上,体素们表征的数量是沿着“1,2,3,4,5,6,7”这样的顺序依次变大的。也就是说,这些神经元,越是在空间上相邻,它们表征的数量越相近。

大脑信息加工的拓扑性质:感受野模型

大脑信息加工的拓扑性质:感受野模型

Refferences:

1、Harvey, B. M., Klein, B. P., Petridou, N., & Dumoulin, S. O. (2013). Topographic representation of numerosity in the human parietal cortex. Science, 341(6150), 1123-1126.

2、Dumoulin, S. O., & Wandell, B. A. (2008). Population receptive field estimates in human visual cortex. Neuroimage, 39(2), 647-660.

雷峰网版权文章,未经授权禁止转载。详情见转载须知

大脑信息加工的拓扑性质:感受野模型

分享:
相关文章

编辑

关注AI学术,例如论文
当月热门文章
最新文章
请填写申请人资料
姓名
电话
邮箱
微信号
作品链接
个人简介
为了您的账户安全,请验证邮箱
您的邮箱还未验证,完成可获20积分哟!
请验证您的邮箱
立即验证
完善账号信息
您的账号已经绑定,现在您可以设置密码以方便用邮箱登录
立即设置 以后再说